Aberrant neuronal hyperactivation causes an age- and diet-dependent decline in associative learning behavior

Author:

Aleogho Binta Maria,Mohri Mizuho,Jang Moon Sun,Tsukada Sachio,Al-Hebri Yana,Tsukada Yuki,Mori Ikue,Noma KentaroORCID

Abstract

AbstractThe impairment of memory, cognition, and behavior during aging is generally thought to arise from diminished neuronal activities. The nematodeCaenorhabditis elegansexhibits age-dependent declines in an associative learning behavior called thermotaxis. Genetic ablation of individual neurons revealed that an absence of either AWC sensory or AIA inter-neurons preserved the thermotaxis ability of aged animals. Calcium imaging showed age-dependent spontaneous hyperactivities in both neurons. The age-dependent neuronal hyperactivity and behavioral decline were ameliorated by changing diets. We further demonstrate that the enhanced activities of AWC and AIA were differentially dependent on the forms of neurotransmission mediated by neurotransmitters and neuropeptides. Together, our data provides evidence that aberrantly enhanced, not diminished, neuronal responses can impair behavior during aging.One-Sentence SummaryEnhanced neuronal activity during aging impairsC. eleganslearning behavior.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3