RPA and Rad27 limit templated and inverted insertions at DNA breaks

Author:

Yu Yang,Wang Xin,Fox Jordan,Li Qian,Yu Yang,Hastings P.J.,Chen Kaifu,Ira Grzegorz

Abstract

ABSTRACTFormation of templated insertions at DNA double-strand breaks (DSBs) is very common in cancer cells. The mechanisms and enzymes regulating these events are largely unknown. Here, we investigated templated insertions in yeast at DSBs using amplicon sequencing across a repaired locus. We document very short (most ∼5-34 bp), templated inverted duplications at DSBs. They are generated through a foldback mechanism that utilizes microhomologies adjacent to the DSB. Enzymatic requirements suggest a hybrid mechanism wherein one end requires Polδ-mediated synthesis while the other end is captured by nonhomologous end joining (NHEJ). This process is exacerbated in mutants with low levels or mutated RPA (rtt105Δ;rfa1-t33) or extensive resection mutant (sgs1Δexo1Δ). Templated insertions from various distant genomic locations also increase in these mutants as well as inrad27Δ and originate from fragile regions of the genome. Among complex insertions, common events are insertions of two sequences, originating from the same locus and with inverted orientation. We propose that these inversions are also formed by microhomology-mediated template switching. Taken together, we propose that a shortage of RPA typical in cancer cells is one possible factor stimulating the formation of templated insertions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3