Pan-cancer molecular signatures connecting aspartate transaminase (AST) to cancer prognosis, metabolic and immune signatures

Author:

Siwo Geoffrey H.,Singal Amit G.,Waljee Akbar K.

Abstract

AbstractBackgroundSerum aspartate transaminase (sAST) level is used routinely in conjunction with other clinical assays to assess liver health and disease. Increasing evidence suggests that sAST is associated with all-cause mortality and has prognostic value in several cancers, including gastrointestinal and urothelial cancers. Here, we undertake a systems approach to unravel molecular connections between AST and cancer prognosis, metabolism, and immune signatures at the transcriptomic and proteomic levels.MethodsWe mined public gene expression data across multiple normal and cancerous tissues using the Genotype Tissue Expression (GTEX) resource and The Cancer Genome Atlas (TCGA) to assess the expression of genes encoding AST isoenzymes (GOT1 and GOT2) and their association with disease prognosis and immune infiltration signatures across multiple tumors. We examined the associations between AST and previously reported pan-cancer molecular subtypes characterized by distinct metabolic and immune signatures. We analyzed human protein-protein interaction networks for interactions between GOT1 and GOT2 with cancer-associated proteins. Using public databases and protein-protein interaction networks, we determined whether the subset of proteins that interact with AST (GOT1 and GOT2 interactomes) are enriched with proteins associated with specific diseases, miRNAs and transcription factors.ResultsWe show that AST transcript isoforms (GOT1 and GOT2) are expressed across a wide range of normal tissues. AST isoforms are upregulated in tumors of the breast, lung, uterus, and thymus relative to normal tissues but downregulated in tumors of the liver, colon, brain, kidney and skeletal sarcomas. At the proteomic level, we find that the expression of AST is associated with distinct pan-cancer molecular subtypes with an enrichment of specific metabolic and immune signatures. Based on human protein-protein interaction data, AST physically interacts with multiple proteins involved in tumor initiation, suppression, progression, and treatment. We find enrichments in the AST interactomes for proteins associated with liver and lung cancer and dermatologic diseases. At the regulatory level, the GOT1 interactome is enriched with the targets of cancer-associated miRNAs, specifically mir34a – a promising cancer therapeutic, while the GOT2 interactome is enriched with proteins that interact with cancer-associated transcription factors.ConclusionsOur findings suggest that perturbations in the levels of AST within specific tissues reflect pathophysiological changes beyond tissue damage and have implications for cancer metabolism, immune infiltration, prognosis, and treatment personalization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3