Origins of noise in both improving and degrading decision making

Author:

Shen BoORCID,Wilson JailynORCID,Nguyen DucORCID,Glimcher Paul W.ORCID,Louie KenwayORCID

Abstract

AbstractNoise is a fundamental problem for information processing in neural systems. In decision-making, noise is assumed to have a primary role in errors and stochastic choice behavior. However, little is known about how noise arising from different sources contributes to value coding and choice behaviors, especially when it interacts with neural computation. Here we examine how noise arising early versus late in the choice process differentially impacts context-dependent choice behavior. We found in model simulations that early and late noise predict opposing context effects: under early noise, contextual information enhances choice accuracy; while under late noise, context degrades choice accuracy. Furthermore, we verified these opposing predictions in experimental human choice behavior. Manipulating early and late noise – by inducing uncertainty in option values and controlling time pressure – produced dissociable positive and negative context effects. These findings reconcile controversial experimental findings in the literature reporting either context-driven impairments or improvements in choice performance, suggesting a unified mechanism for context-dependent choice. More broadly, these findings highlight how different sources of noise can interact with neural computations to differentially modulate behavior.SignificanceThe current study addresses the role of noise origin in decision-making, reconciling controversies around how decision-making is impacted by context. We demonstrate that different types of noise – either arising early during evaluation or late during option comparison - leads to distinct results: with early noise, context enhances choice accuracy, while with late noise, context impairs it. Understanding these dynamics offers potential strategies for improving decision-making in noisy environments and refining existing neural computation models. Overall, our findings advance our understanding of how neural systems handle noise in essential cognitive tasks, suggest a beneficial role for contextual modulation under certain conditions, and highlight the profound implications of noise structure in decision-making.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3