Predicting Postoperative Delirium in Older Patients: a multicenter retrospective cohort study

Author:

Wu Shun-Chin JimORCID,Sharma Nitin,Bauch Anne,Yang Hao-Chun,Hect Jasmine L.,Thomas Christine,Wagner Sören,Förstner Bernd R.,von Arnim Christine A.F.,Kaufmann Tobias,Eschweiler Gerhard W.,Wolfers Thomas,

Abstract

AbstractBackgroundThe number of elective surgeries for older individuals is on the rise globally. Machine learning may improve risk assessment with an impact on surgical planning and postoperative care. Preoperative cognitive assessment may facilitate early identification of postoperative delirium (POD). This study aims to estimate the predictive ability of machine learning models for POD using pre-and/or perioperative features, with a specific focus on adding neuropsychological assessments prior to surgery.Materials and MethodsThis retrospective cohort study analyzed data from the multicenter PAWEL study and its PAWEL-R substudy, encompassing older patients (≥70 years) undergoing elective surgeries across five medical centers from July 2017 to April 2019. A total of 1624 patients were included, with POD diagnosis made before discharge. Data included demographics, clinical, surgical, and neuropsychological features collected pre- and perioperatively. Machine learning model performance was evaluated using the area under the receiver operating characteristic curve (AUC), with permutation testing for significance and SHapley Additive exPlanations (SHAP) to identify effective neuropsychological assessments.ResultsIn this cohort of 1624 patients, 52.3% (N=850) were male, with a mean [SD] age of 77.9 [4.9] years. Predicting POD before surgery using demographic, clinical, surgical, and neuropsychological features achieved an AUC of 0.79. Incorporating all pre- and perioperative features into the model yielded a slightly higher AUC of 0.82, with no significant difference observed (P= .19). Notably, cognitive factors alone were not strong predictors (AUC=0.61). However, specific tests within neuropsychological assessments, such as the Montreal Cognitive Assessment memory subdomain and Trail Making Test Part B, were found to be crucial for prediction according to SHAP analysis.Conclusion and RelevancePreoperative risk prediction for POD can increase risk awareness in presurgical assessment and improve postoperative management in patients with a high risk for delirium.HighlightsAnalyzed 1624 older patients (≥70 years) undergoing elective surgeries across five medical centers from July 2017 to April 2019.Established machine learning model to predict postoperative delirium before surgery.Preoperative cognition enhances predictive performance, comparable to models incorporating all pre- and perioperative features.Montreal Cognitive Assessment memory subdomain and Trail Making Test Part B drive the cognition-based prediction.Perioperative surgical features, such as the duration of the surgery, are important predictors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3