An ALS Therapeutic Assembly Modulator Target in Peripheral Blood Mononuclear Cells: Implications for ALS Pathophysiology, Therapeutics, and Diagnostics

Author:

Yu Shao Feng,Michon Maya,Lingappa Anuradha F.,Paulvannan Kumar,Solas Dennis,Staats Kim,Ichida Justin,Dey Debendranath,Rosenfeld Jeffrey,Lingappa Vishwanath R.ORCID

Abstract

AbstractAssembly modulators are a new class of allosteric site-targeted therapeutic small molecules, some of which are effective at restoring nuclear localization of TDP-43 in ALS cellular models, and display efficacy in a variety of ALS animal models. One of these compounds has been shown to target a small subfraction of protein disulfide isomerase, a known allosteric modulator implicated in ALS pathophysiology, within a novel, transient, and energy-dependent multi-protein complex that includes other important members of the ALS interactome, such as TDP- 43, RanGTPase, and selective autophagy receptor p62/SQSTM1. Building on earlier literature suggesting PBMC dysfunction in ALS, we demonstrate here that a similar multi-protein complex drug target is present in PBMCs with signature alterations in PBMCs from ALS patients compared to PBMCs from healthy individuals. ALS-associated changes in the drug target include increased RanGTPase and MMP9, diminished p62/SQSTM1, and most distinctively, appearance of a 17kDa post-translationally modified form of RanGTPase. Many of these changes are not readily apparent from analysis of whole cell extracts, as a number of the proteins present in the target multi-protein complex, including RanGTPase, comprise a miniscule percent of their total in cell extracts. A small subset of each of these proteins appear to come together in a transient, energy-dependent fashion, to form the drug target. Furthermore, whole blood from ALS patients shows a distinctive degradation of RanGTPase not observed in blood from healthy individuals, which appears to be rescued by treatment with either of two structurally unrelated ALS-active assembly modulators. Our findings are consistent with the hypothesis that ALS is fundamentally a disorder of homeostasis that can be both detected and treated by assembly modulators.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3