Dynamic energy budget model for a bumble bee colony: Predicting the spatial distribution and dynamics of colonies across multiple seasons

Author:

Capera-Aragones Pau,Mariño Joany,Hurford Amy,Tyson Rebecca C.,Foxall Eric

Abstract

AbstractBumble bees are important pollinators of many crops around the world. In recent decades, agricultural intensification has resulted in significant declines in bumble bee populations and the pollination services they provide. Empirical studies have shown that this trend can be reversed, however, by enhancing the agricultural landscape with natural habitat, such as adding wildflower patches adjacent to crops. Despite the empirical evidence, the mechanisms behind these positive effects are not fully understood, and the specific characteristics of the enhanced natural habitat that would maximize benefits are unclear at this time. Theoretical studies, in the form of mathematical models, have proven useful in elucidating the underlying mechanisms and determining the optimal natural habitat configurations. Existing models, however, generally focus only on particular aspects of bumble bee behaviour; some models are accurate at describing population dynamics, while others are accurate at describing their spatial distribution. In this work, we build a unique model coupling population dynamics, using a whole-colony Dynamic Energy Budget (DEB) approach, to a spatial distribution model based on the maximum energy principle. This coupling gives valuable new insights into the effects of spatial arrangements on population dynamics, and vice-versa. With our model, we answer questions such as when, how much, or what type of wildflower patches should be planted to maximize crop pollination services and minimize bee decline. We find that planting wildflowers that bloom before and after crop bloom is crucial to achieve high pollination services and preserving wild pollinator populations. We also find that small quantities of natural habitat are needed when the crop is nutritionally rich, but higher quantities are most beneficial when the crop is nutritionally deficient.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis;In: Ecology letters,2020

2. BEESCOUT: A model of bee scouting behaviour and a software tool for characterizing nectar/pollen landscapes for BEEHAVE;In: Ecological modelling,2016

3. Bumble-BEEHAVE: A systems model for exploring multifactorial causes of bumblebee decline at individual, colony, population and community level;In: Journal of Applied Ecology,2018

4. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands;In: Science,2006

5. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop;In: Journal of Applied Ecology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3