Correspondence of fentanyl brain pharmacokinetics and behavior measured via engineering opioids biosensors and computational ethology

Author:

Muthusamy Anand K.ORCID,Rosenberg Matthew H.,Kim Charlene H.,Wang Alex Z.,Ebisu Haruka,Chin Theodore M.,Koranne Ashil,Marvin Jonathan S.,Cohen Bruce N.,Looger Loren L.,Oka Yuki,Meister Markus,Lester Henry A.ORCID

Abstract

AbstractDespite the ongoing epidemic of opioid use disorder and death by fentanyl overdose, opioids remain the gold standard for analgesics. Pharmacokinetics (PK) dictates the individual’s experience and utility of drugs; however, PK and behavioral outcomes have been conventionally studied in separate groups, even in preclinical models. To bridge this gap, we developed the first class of sensitive, selective, and genetically encodable fluorescent opioid biosensors, iOpioidSnFRs, including the fentanyl sensor, iFentanylSnFR. We expressed iFentanylSnFR in the ventral tegmental area of mice and recorded [fentanyl] alongside videos of behaviors before and after administration. We developed a machine vision routine to quantify the effects of the behavior on locomotor activity. We found that mice receiving fentanyl exhibited a repetitive locomotor pattern that paralleled the [fentanyl] time course. In a separate experiment, mice navigating a complex maze for water showed a dose-dependent impairment in navigation, in which animals repeated incorrect paths to the exclusion of most of the unexplored maze for the duration of the average fentanyl time course. This approach complements classical operant conditioning experiments and introduces a key feature of human addiction, the ability to carry out an ethologically relevant survival task, only now quantified in rodents. Finally, we demonstrate the utility of iFentanylSnFR in detecting fentanyl spiked into human biofluids and the generalizability of engineering methods to evolve selective biosensors of other opioids, such as tapentadol and levorphanol. These results encourage diagnostic and continuous monitoring approaches to personalizing opioid regimens for humans.

Publisher

Cold Spring Harbor Laboratory

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3