Digital Nanofluidic Chip for Simple and Highly Quantitative Detection of HPV Target

Author:

Liu Li,Dollery Stephen J.,Tobin Gregory J.,Lu Guoyu,Du Ke

Abstract

AbstractQuantitative analysis of human papillomavirus (HPV)-infected cervical cancer is essential for early diagnosis and timely treatment of cervical cancer. Here, we introduce a novel energy transfer-labeled oligonucleotide probe to enhance the loop-mediated isothermal amplification (LAMP) assay for highly sensitive and specific detection of HPV 16. Conducted as a single-step assay within a digital nanofluidic chip featuring numerous reaction reservoirs, our method facilitates target amplification under isothermal conditions. Targeting an HPV 16 gene, our chip demonstrates the capability to detect HPV DNA at concentrations as low as 1 fM, spanning a dynamic range of five orders of magnitude. Importantly, our digital chip allows for highly quantitative detection of target genes at low concentrations, with the correlation between target concentration and the number of microwells exhibiting fluorescence signals. Furthermore, we have developed a computer vision method for automated and 100% accurate quantification of target concentrations. This research holds promising applications in clinical diagnosis and is poised for seamless integration into both hospital and point-of-care settings.

Publisher

Cold Spring Harbor Laboratory

Reference22 articles.

1. Cervical cancer. https://www.who.int/health-topics/cervical-cancer (accessed 2024-01-28).

2. Human Papillomavirus (HPV). https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccine-standardization/human-papillomavirus (accessed 2024-01-23).

3. 2020 list of human papillomavirus assays suitable for primary cervical cancer screening

4. Impact of cervical screening by human papillomavirus genotype: Population-based estimations

5. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3