Butyrate and propionate are microbial danger signals that activate the NLRP3-inflammasome in human macrophages in the presence of TLR stimulation

Author:

Wang Wei,Dernst Alesya,Martin Bianca,Lorenzi Lucia,Cadefau Maria,Phulphagar Kshiti,Wagener Antonia,Budden Christina,Stair Neil,Wagner Theresa,Färber Harald,Jaensch Andreas,Stahl Rainer,Duthie Fraser,Schmidt Susanne V.,Coll Rebecca C.,Meissner Felix,Cuartero Sergi,Mangan Matthew S.J.,Latz Eicke

Abstract

AbstractShort chain fatty acids (SCFAs) are immunomodulatory compounds produced by the microbiome through fermentation of dietary fibre. Although they are generally considered beneficial for gut health, patients suffering from inflammatory bowel disease (IBD) have shown poor tolerance to fibre-rich diets, suggesting that SCFAs may have contrary effects under inflammatory conditions. To investigate this, we examined the effect of SCFAs on human macrophages in the presence of toll-like receptor agonists. In contrast to their anti-inflammatory effects under steady state conditions, we observed that the SCFAs butyrate and propionate triggered the activation of the NLRP3 inflammasome when added in conjunction with TLR agonists. Mechanistically, butyrate and propionate activated NLRP3 by inhibiting HDACs 1-3 and 10, leading to an uneven distribution of histone hyperacetylation that resulted in alterations in the transcriptome. Specifically, there was a lack of hyperacetylation at the loci of theCFLARandIL10genes, two important inhibitors of NLRP3 inflammasome activation. The concurrent loss of transcription and protein expression of cFLIP and IL-10 enabled caspase-8-dependent NLRP3-inflammasome activation. SCFA-driven NLRP3 activation did not require potassium efflux and did not result in cell death but rather triggered hyperactivation and IL-1β release. Our findings demonstrate that butyrate and propionate are bacterially-derived, viability-dependent danger signals (vita-PAMPs) that regulate NLRP3 inflammasome activation through epigenetic modulation of the inflammatory response.SummaryUnder inflammatory conditions, SCFAs are bacterially-derived, viability-dependent danger signals that, through HDAC inhibition and epigenetic modification, prevent expression of the anti-cell death gene cFLIP to trigger activation of the NLRP3 inflammasome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3