Hyperspectral imaging for chloroplast movement detection

Author:

Hermanowicz PawełORCID,Łabuz JustynaORCID

Abstract

SummaryWe employed hyperspectral imaging to detect chloroplast positioning inNicotiana benthamianaandArabidopsis thalianaleaves and assess its influence on commonly used vegetation indices. In low light, chloroplasts move to cell walls perpendicular to the direction of the incident light. In high light, they move to cell walls parallel to the light direction. Chloroplast movements result in significant changes in leaf transmittance and reflectance. The changes in leaf reflectance offer a way to examine chloroplast positioning in a non-contact way. At the same time, they may confound remote sensing of other physiological traits. The shape of reflectance spectra recorded on irradiated and non-irradiated parts ofN. benthamianaandA. thalianaleaves indicated the specific position of chloroplasts. Low blue light resulted in a decrease in leaf reflectance in the green-yellow region of the spectrum. High blue light irradiation caused an increase in leaf reflectance in the visible range. The differential spectra, showing the effect of high light on leaf reflectance, exhibited a characteristic saddle in the green-yellow region and a peak at around 695 nm. Results obtained for A. thaliana mutants with disrupted chloroplast movements suggest that the observed spectral changes are mostly due to the chloroplast relocations. The reflectance spectra were used to train machine learning methods in the classification of leaves according to the chloroplast positioning. The convolutional network showed low levels of misclassification of leaves irradiated with high light even when different species were used for training and testing. This suggests that reflectance spectra may be used to detect the chloroplast avoidance response in heterogeneous patches of vegetation. We also examined the correlation between chloroplast positioning and values of indices of normalized-difference type for various combinations of wavelengths and proposed a chloroplast movement index for validation of chloroplast positions in leaves. The analysis of commonly used vegetation indices showed that their values may be altered due to chloroplast rearrangements. Our work indicates that changes in leaf reflectance due to chloroplast movements may be substantial and should be taken into account in remote sensing studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3