Optimisation strategies for directed evolution without sequencing

Author:

James JessORCID,Towers SebastianORCID,Foerster JakobORCID,Steel HarrisonORCID

Abstract

AbstractDirected evolution can enable engineering of biological systems with minimal knowledge of their underlying sequence-to-function relationships. A typical directed evolution process consists of iterative rounds of mutagenesis and selection that are designed to steer changes in a biological system (e.g. a protein) towards some functional goal. Much work has been done, particularly leveraging advancements in machine learning, to optimise the process of directed evolution. Many of these methods, however, require DNA sequencing and synthesis, making them resource-intensive and incompatible with developments in targetedin vivomutagenesis. Operating within the experimental constraints of established sorting-based directed evolution techniques (e.g. Fluorescence-Activated Cell Sorting, FACS), we explore approaches for optimisation of directed evolution that do not require sequencing information. We then expand our methods to the context of emerging experimental techniques in directed evolution, which allow for single-cell selection based on fitness objectives defined from any combination measurable traits. Finally, we validate the developed selection strategies on the GB1 empirical landscape, demonstrating that they can lead to up to a 7.5 fold increase in the probability of attaining the global fitness peak.Author summaryThe standard approach to sorting-based selection in directed evolution is to take forward only the top-performing variants from each generation of a single population. In this work, we begin to explore alternative selection strategies within a simulated directed evolution framework. We propose “selection functions”, which allow us to tune the balance of exploration and exploitation of a fitness landscape, and we demonstrate that splitting a population into sub-populations can improve both the likelihood and magnitude of a successful outcome. We also propose strategies to leverage emerging selection methods that can implement single-cell selection based on any combination of measurable traits. We validate our optimised directed evolution approaches on the empirical fitness landscape of the GB1 immunoglobulin protein.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3