Intestinal tuft cells assemble a cytoskeletal superstructure composed of co-aligned actin bundles and microtubules

Author:

Silverman Jennifer B.,Krystofiak Evan E.,Caplan Leah R.,Lau Ken S.ORCID,Tyska Matthew J.ORCID

Abstract

ABSTRACTBackground & AimsAll tissues consist of a distinct set of cell types, which collectively support organ function and homeostasis. Tuft cells are a rare epithelial cell type found in diverse epithelia, where they play important roles in sensing antigens and stimulating downstream immune responses. Exhibiting a unique polarized morphology, tuft cells are defined by an array of giant actin filament bundles that support ∼2 μm of apical membrane protrusion and extend over 7 μm towards the cell’s perinuclear region. Despite their established roles in maintaining intestinal epithelial homeostasis, tuft cells remain understudied due to their rarity (e.g. ∼ 1% in the small intestinal epithelium). Details regarding the ultrastructural organization of the tuft cell cytoskeleton, the molecular components involved in building the array of giant actin bundles, and how these cytoskeletal structures support tuft cell biology remain unclear.MethodsTo begin to answer these questions, we used advanced light and electron microscopy to perform quantitative morphometry of the small intestinal tuft cell cytoskeleton.ResultsWe found that tuft cell core bundles consist of actin filaments that are crosslinked in a parallel “barbed-end out” configuration. These polarized structures are also supported by a unique group of tuft cell enriched actin-binding proteins that are differentially localized along the giant core bundles. Furthermore, we found that tuft cell actin bundles are co-aligned with a highly ordered network of microtubules.ConclusionsTuft cells assemble a cytoskeletal superstructure that is well positioned to serve as a track for subcellular transport along the apical-basolateral axis and in turn, support the dynamic sensing functions that are critical for intestinal epithelial homeostasis.SYNOPSISThis research leveraged advanced light and electron microscopy to perform quantitative morphometry of the intestinal tuft cell cytoskeleton. Three-dimensional reconstructions of segmented image data revealed a co-aligned actin-microtubule superstructure that may play a fundamental role in tuft cell function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3