Biophysical metabolic modeling of complex bacterial colony morphology

Author:

Dukovski IlijaORCID,Golden LaurenORCID,Zhang Jing,Osborne MelisaORCID,Segrè DanielORCID,Korolev Kirill S.ORCID

Abstract

SummaryMicrobial colony growth is shaped by the physics of biomass propagation and nutrient diffusion, and by the metabolic reactions that organisms activate as a function of the surrounding environment. While microbial colonies have been explored using minimal models of growth and motility, full integration of biomass propagation and metabolism is still lacking. Here, building upon our framework for Computation of Microbial Ecosystems in Time and Space (COMETS), we combine dynamic flux balance modeling of metabolism with collective biomass propagation and demographic fluctuations to provide nuanced simulations ofE. colicolonies. Simulations produced realistic colony morphology, consistent with our experiments. They characterize the transition between smooth and furcated colonies and the decay of genetic diversity. Furthermore, we demonstrate that under certain conditions, biomass can accumulate along “metabolic rings” that are reminiscent of coffee-stain rings, but have a completely different origin. Our approach is a key step towards predictive microbial ecosystems modeling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3