Seq-Scope Protocol: Repurposing Illumina Sequencing Flow Cells for High-Resolution Spatial Transcriptomics

Author:

Kim Yongsung,Cheng Weiqiu,Cho Chun-Seok,Hwang Yongha,Si Yichen,Park Anna,Schrank Mitchell,Hsu Jer-En,Xi Jingyue,Kim Myungjin,Pedersen Ellen,Koues Olivia I.,Wilson Thomas,Jun Goo,Kang Hyun Min,Lee Jun Hee

Abstract

ABSTRACTSpatial transcriptomics (ST) technologies represent a significant advance in gene expression studies, aiming to profile the entire transcriptome from a single histological slide. These techniques are designed to overcome the constraints faced by traditional methods such as immunostaining and RNAin situhybridization, which are capable of analyzing only a few target genes simultaneously. However, the application of ST in histopathological analysis is also limited by several factors, including low resolution, a limited range of genes, scalability issues, high cost, and the need for sophisticated equipment and complex methodologies. Seq-Scope—a recently developed novel technology—repurposes the Illumina sequencing platform for high-resolution, high-content spatial transcriptome analysis, thereby overcoming these limitations. Here we provide a detailed step-by-step protocol to implement Seq-Scope with an Illumina NovaSeq 6000 sequencing flow cell that allows for the profiling of multiple tissue sections in an area of 7 mm × 7 mm or larger. In addition to detailing how to prepare a frozen tissue section for both histological imaging and sequencing library preparation, we provide comprehensive instructions and a streamlined computational pipeline to integrate histological and transcriptomic data for high-resolution spatial analysis. This includes the use of conventional software tools for single cell and spatial analysis, as well as our recently developed segmentation-free method for analyzing spatial data at submicrometer resolution. Given its adaptability across various biological tissues, Seq-Scope establishes itself as an invaluable tool for researchers in molecular biology and histology.KEY POINTSThe protocol outlines a method for repurposing an Illumina NovaSeq 6000 flow cell as a spatial transcriptomics array, enabling the generation of high-resolution spatial datasets.The protocol introduces a streamlined data analysis pipeline that produces a spatial digital gene expression matrix suitable for various single-cell and spatial transcriptome analysis methods.The protocol allows for the capture of histology images from the same tissue section subjected to spatial transcriptomics analysis and allows users to precisely align the transcriptome dataset with the histological image using fiducial marks engraved on the flow cell surface.Leveraging commonly available Illumina equipment, the protocol offers researchers ultra-high submicrometer resolution in spatial transcriptomics analysis with a comprehensive pipeline, rapid turnaround, cost efficiency, and versatility.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3