A Computational Framework for Intraoperative Pupil Analysis in Cataract Surgery

Author:

Giap Binh DuongORCID,Srinivasan KarthikORCID,Mahmoud Ossama,Ballouz DenaORCID,Lustre JeffersonORCID,Likosky KeelyORCID,Mian Shahzad I.ORCID,Tannen Bradford L.,Nallasamy NambiORCID

Abstract

ABSTRACTPurposePupillary instability is a known risk factor for complications in cataract surgery. This study aims to develop and validate an innovative and reliable computational framework for the automated assessment of pupil morphologic changes during the various phases of cataract surgery.DesignRetrospective surgical video analysis.SubjectsTwo hundred forty complete surgical video recordings, among which 190 surgeries were conducted without the use of pupil expansion devices and 50 were performed with the use of a pupil expansion device.MethodsThe proposed framework consists of three stages: feature extraction, deep learning (DL)-based anatomy recognition, and obstruction detection/compensation. In the first stage, surgical video frames undergo noise reduction using a tensor-based wavelet feature extraction method. In the second stage, DL-based segmentation models are trained and employed to segment the pupil, limbus, and palpebral fissure. In the third stage, obstructed visualization of the pupil is detected and compensated for using a DL-based algorithm. A dataset of 5,700 intraoperative video frames across 190 cataract surgeries in the BigCat database was collected for validating algorithm performance.Main Outcome MeasuresThe pupil analysis framework was assessed on the basis of segmentation performance for both obstructed and unobstructed pupils. Classification performance of models utilizing the segmented pupil time series to predict surgeon use of a pupil expansion device was also assessed.ResultsAn architecture based on the FPN model with VGG16 backbone integrated with the AWTFE feature extraction method demonstrated the highest performance in anatomy segmentation, with Dice coefficient of 96.52%. Incorporation of an obstruction compensation algorithm improved performance further (Dice 96.82%). Downstream analysis of framework output enabled the development of an SVM-based classifier that could predict surgeon usage of a pupil expansion device prior to its placement with 96.67% accuracy and AUC of 99.44%.ConclusionsThe experimental results demonstrate that the proposed framework 1) provides high accuracy in pupil analysis compared to human-annotated ground truth, 2) substantially outperforms isolated use of a DL segmentation model, and 3) can enable downstream analytics with clinically valuable predictive capacity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3