Adaptive trade-offs between vertebrate defense and insect predation drive ant venom evolution

Author:

Touchard AxelORCID,Robinson Samuel D.,Lalagüe Hadrien,Ascoët Steven,Billet ArnaudORCID,Dejean AlainORCID,Téné Nathan J.ORCID,Petitclerc Frédéric,Troispoux Valérie,Treilhou MichelORCID,Bonnafé Elsa,Vetter IrinaORCID,Vizueta Joel,Moreau Corrie S.ORCID,Orivel Jérôme,Tysklind NiklasORCID

Abstract

AbstractStinging ants have diversified into various ecological niches, and several evolutionary drivers may have contributed to shape the composition of their venom. To comprehend the drivers underlying venom variation in ants, we selected 15 Neotropical species and recorded a range of traits, including ecology, morphology, and venom bioactivity. Principal component analysis of both morphological and venom bioactivity traits revealed that stinging ants display two functional strategies. Additionally, phylogenetic comparative analysis indicated that venom function (predatory, defensive, or both) and mandible morphology significantly correlate with venom bioactivity and amount, while pain-inducing activity trades off with insect paralysis. Further analysis of the venom biochemistry of the 15 species revealed switches between cytotoxic and neurotoxic venom compositions in some species. This study highlights the fact that ant venoms are not homogenous, and for some species, there are major shifts in venom composition associated with the diversification of venom ecological functions.SignificanceVenoms are under severe evolutionary pressures, exerted either on the innovation of toxins or the reduction of the metabolic cost of production (1). To reduce the metabolic costs associated with venom secretion, some venomous animals can regulate venom expenditure by metering the amount of venom injected and by switching between offensive and defensive compositions (2–2). Many ants use venom for subduing a wide range of arthropod prey, as well as for defensive purposes against invertebrates and vertebrates, but are unable to adapt venom composition to stimuli (5, 6). Consequently, the expression of venom genes directly affects the ability of ants to interact with the biotic environment, and the venom composition may be fine-tuned to the ecology of each species. A previous study showed that defensive traits in ants exhibit an evolutionary trade-off in which the presence of a sting is negatively correlated with several other defensive traits, further supporting that trade-offs in defensive traits significantly constrain trait evolution and influence species diversification in ants (7). However, the sting is not used for the same purpose depending on the ant species. Our study supports an evolutionary trade-off between the ability of venom to deter vertebrates and to paralyze insects which are correlated with different life history strategies among Formicidae.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3