From resonance to chaos: modulating spatiotemporal patterns through a synthetic optogenetic oscillator

Author:

Park Jung HunORCID,Holló GáborORCID,Schaerli YolandaORCID

Abstract

AbstractOscillations are a recurrent phenomenon in biological systems across scales, including circadian clocks, metabolic oscillations and embryonic genetic oscillators. Despite their fundamental significance in biology, deciphering core principles of biological oscillators is very challenging due to the multiscale complexity of genetic networks and the difficulty in perturbing organismsin vivo. In this study, we tackle this challenge by re-designing the well-characterised synthetic oscillator, known as “repressilator”, inEscherichia coliand controlling it using optogenetics, thus introducing the “optoscillator”. When we apply periodic light pulses, the optoscillator behaves as a forced oscillator. Bacterial colonies harboring synthetic oscillators manifest oscillations as spatial ring patterns. Leveraging this feature, we systematically investigate the number, intensity and sharpness of the rings under different regimes of light exposure. By integrating experimental approaches with mathematical modeling, we show that this simple oscillatory circuit can generate complex dynamics that, depending on the external periodic forcing, are transformed into distinct spatial patterns. We report the observation of synchronisation, resonance, undertone and period doubling. Furthermore, we present evidence supporting the existence of a chaotic regime. This work highlights the intricate spatiotemporal patterns accessible by synthetic oscillators and underscores the potential of our approach in understanding the underlying principles governing biological oscillations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3