Explainable deep learning on 7500 whole genomes elucidates cancer-specific patterns of chromosomal instability

Author:

Ali al-Badri Mohamed,Cross William CH,Barnes Chris PORCID

Abstract

AbstractChromosomal instability (CIN) refers to an increased rate of chromosomal changes within cells. It is highly prevalent in cancer cells and leads to abnormalities in chromosome number (aneuploidy) and structure. CIN contributes to genetic diversity within a tumour, which facilitates tumour progression, drug resistance, and metastasis. Here, we present a deep learning method and an exploration of the chromosome copy aberrations (CNAs) resultant from CIN, across 7,500 high-depth, whole genome sequences, representing 13 cancer types. We found that the types of CNAs can act as a highly specific classifier for primary site. Using an explainable AI approach, we revealed both established and novel loci that contributed to cancer type, and focusing on highly significant chromosome loci within cancer types, we demonstrated prognostic relevance. We outline how the developed methodology can provide several applications for researchers, including drug target and biomarker discovery, as well as the identification of cancers of unknown primary site.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3