Bayesian Optimization of Neurostimulation (BOONStim)

Author:

Oliver Lindsay D.ORCID,Jeyachandra Jerrold,Dickie Erin W.,Hawco Colin,Mansour Salim,Hare Stephanie M.,Buchanan Robert W.,Malhotra Anil K.,Blumberger Daniel M.ORCID,Deng Zhi-DeORCID,Voineskos Aristotle N.

Abstract

AbstractBackgroundTranscranial magnetic stimulation (TMS) treatment response is influenced by individual variability in brain structure and function. Sophisticated, user-friendly approaches, incorporating both established functional magnetic resonance imaging (fMRI) and TMS simulation tools, to identify TMS targets are needed.ObjectiveThe current study presents the development and validation of the Bayesian Optimization of Neuro-Stimulation (BOONStim) pipeline.MethodsBOONStim uses Bayesian optimization for individualized TMS targeting, automating interoperability between surface-based fMRI analytic tools and TMS electric field modeling. BOONStim’s Bayesian optimization performance was evaluated in a sample dataset (N=10) using standard circular and functional connectivity-defined targets, and compared to densely sampled grid optimization.ResultsBayesian optimization converged to similar levels of total electric field stimulation across targets in under 30 iterations, converging within 5% error of the maxima detected by grid optimization, and requiring less time.ConclusionsBOONStim is a scalable and configurable user-friendly pipeline for individualized TMS targeting with quick turnaround.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3