Meditation Experience is Associated with Increased Structural Integrity of the Pineal Gland and greater total Grey Matter maintenance

Author:

Plini Emanuele RG,Melnychuk Michael C,Dockree Paul M

Abstract

AbstractGrowing evidence demonstrates that meditation practice supports cognitive functions including attention and interoceptive processing, and is associated with structural changes across cortical networks including prefrontal regions, and the insula. However, the extent of subcortical morphometric changes linked to meditation practice is less appreciated. A noteworthy candidate is the Pineal Gland, a key producer of melatonin, which regulates circadian rhythms that augment sleep-wake patterns, and may also provide neuroprotective benefits to offset cognitive decline. Increased melatonin levels as well as increased fMRI BOLD signal in the Pineal Gland has been observed in mediators vs. controls. However, it is not known if long-term meditators exhibit structural change in the Pineal Gland linked to lifetime duration of practice. In the current study we performed Voxel-based morphometry (VBM) analysis to investigate: 1) whether long-term meditators (LTMs) (n=14) exhibited greater Pineal Gland integrity compared to a control group (n=969), 2) a potential association between the estimated lifetime hours of meditation (ELHOM) and Pineal Gland integrity, and 3) whether LTMs show greater Grey Matter (GM) maintenance (BrainPAD) that is associated with Pineal Gland integrity. The results revealed greater Pineal Gland integrity and lower BrainPAD scores (younger brain age) in LTMs compared to controls. Exploratory analysis revealed a positive association between ELHOM and greater signal intensity in the Pineal Gland but not with GM maintenance as measured by BrainPAD score. However, greater Pineal integrity and lower BrainPAD scores were correlated in LTMs. The potential mechanisms by which meditation influences Pineal Gland function, hormonal metabolism, and GM maintenance are discussed – in particular melatonin’s roles in sleep, immune response, inflammation modulation, and stem cell and neural regeneration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3