Normative models combining fetal and postnatal MRI data to characterize neurodevelopmental trajectories during the transition from in- to ex-utero

Author:

Mihailov A.,Pron A.,Lefèvre J.,Deruelle C.,Desnous B.,Bretelle F.,Manchon A.,Milh M.,Rousseau F.,Auzias G.,Girard N.

Abstract

ABSTRACTThe perinatal period involves transitioning from an intra- to an extrauterine environment, which requires a complex adaptation of the brain. This period is marked with dynamic and multifaceted cortical changes in both structure and function. Most studies to date have focused either on the fetal or postnatal period, independently. To the best of our knowledge, this is the first neurodevelopmental study targeting the cortical trajectory of typically developing perinatal subjects, combining MRIs from both fetal and postnatal participants. Prior to analysis, preprocessing and segmentation parameters were harmonized across all subjects in order to overcome methodological limitations that arise when studying such different populations. We conducted a normative modeling analysis on a sample of 607 subjects, age ranged 24 to 45 weeks post-conception, to observe changes that arise as participants traverse the birth barrier. We observed that the trajectories of global surface area and several volumetric features, including total gray matter, white matter, brainstem, cerebellum and hippocampi, follow distinct but continuous patterns during this transition. We further report three features presenting a discontinuity in their neurodevelopmental trajectories as participants traverse from a fetal to a postnatal environment: the extra-cerebrospinal fluid volume, the ventricular volume and global gyrification. The current study demonstrates the presence of unique neurodevelopmental patterns for several structural features during the perinatal period, and confirms that not all features are affected in the same way as they cross the birth barrier.SIGNIFICANCE STATEMENTThe perinatal phase comprises the fetal and immediate postnatal period, and is generally described as the time surrounding birth. Comprehensively understanding this period is crucial due to the presence of dynamic and multifaceted brain changes. What makes this investigation unique is that it is the first neurodevelopmental study, to the best of our knowledge, focused on the cortical trajectory of typically developing perinatal subjects through the combination of both fetal and postnatal participants into one analysis. We report that certain brain feature trajectories change drastically as fetuses become newborns, while other features remain continuous. These observations are relevant in both the isolation of biomarkers for later cognitive and physiological disorders and in the understanding of typical cerebral development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3