Author:
Su Kuan-Chung,Radul Elena,Maier Nolan K,Tsang Mary-Jane,Goul Claire,Moodie Brittania,Keys Heather R.,Cheeseman Iain M
Abstract
AbstractMicrotubules play essential roles in diverse cellular processes and are important pharmacological targets for treating human disease. Here, we sought to identify cellular factors that modulate the sensitivity of cells to anti-microtubule drugs. We conducted a genome-wide CRISPR/Cas9-based functional genetics screen in human cells treated with the microtubule-destabilizing drug nocodazole or the microtubule-stabilizing drug taxol. We further conducted a focused secondary screen to test drug sensitivity for ∼1400 gene targets across two distinct human cell lines and to additionally test sensitivity to the Kif11-inhibitor, STLC. These screens defined gene targets whose loss enhances or suppresses sensitivity to anti-microtubule drugs. In addition to gene targets whose loss sensitized cells to multiple compounds, we observed cases of differential sensitivity to specific compounds and differing requirements between cell lines. Our downstream molecular analysis further revealed additional roles for established microtubule-associated proteins and identified new players in microtubule function.
Publisher
Cold Spring Harbor Laboratory