Abstract
SUMMARYFlexible behavior depends on abstract rules to generalize beyond specific instances, and outcome monitoring to adjust actions. Cortical circuits are posited to read out rules from high-dimensional representations of task-relevant variables in prefrontal cortex (PFC). We instead hypothesized that converging inputs from PFC, directly or via basal ganglia (BG), enable primate-specific thalamus to select rules. To test this, we simultaneously measured spiking activity across PFC and two connected thalamic nuclei of monkeys applying rules. Abstract rule information first appeared in the ventroanterior thalamus (VA) – the main thalamic hub between BG and PFC. The mediodorsal thalamus (MD) also represented rule information before PFC, which persisted after rule cues were removed, to help maintain activation of relevant posterior PFC cell ensembles. MD, a major recipient of midbrain dopamine input, was first to represent information about behavioral outcomes. This persisted after the trial (also in PFC). A PFC-BG-thalamus model reproduced key findings, and thalamic-lesion modeling disrupted PFC rule representations. These results suggest a revised view of the neural basis of flexible behavior in primates, featuring a central role for thalamus in selecting high-level cognitive information from PFC and implementing post-error behavioral adjustments, and of the functional organization of PFC along its anterior-posterior dimension.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献