A Foxf1-Wnt-Nr2f1 cascade promotes atrial cardiomyocyte differentiation in zebrafish

Author:

Coppola UgoORCID,Kenney Jennifer,Waxman Joshua S.ORCID

Abstract

AbstractNr2f transcription factors (TFs) are conserved regulators of vertebrate atrial cardiomyocyte (AC) differentiation. However, little is known about the mechanisms directing Nr2f expression in ACs. Here, we identified a conserved enhancer 3’ to thenr2f1alocus, which we call3’reg1-nr2f1a(3’reg1), that can promote Nr2f1a expression in ACs. Sequence analysis of the enhancer identified putative Lef/Tcf and Foxf TF binding sites. Mutation of the Lef/Tcf sites within the3’reg1reporter, knockdown of Tcf7l1a, and manipulation of canonical Wnt signaling support that Tcf7l1a is derepressed via Wnt signaling to activate the transgenic enhancer and promote AC differentiation. Similarly, mutation of the Foxf binding sites in the3’reg1reporter, coupled with gain- and loss-of-function analysis supported that Foxf1 promotes expression of the enhancer and AC differentiation. Functionally, we find that Wnt signaling acts downstream of Foxf1 to promote expression of the3’reg1reporter within ACs and, importantly, both Foxf1 and Wnt signaling require Nr2f1a to promote a surplus of differentiated ACs. CRISPR-mediated deletion of the endogenous3’reg1abrogates the ability of Foxf1 and Wnt signaling to produce surplus ACs in zebrafish embryos. Together, our data support that downstream members of a conserved regulatory network involving Wnt signaling and Foxf1 function on anr2f1aenhancer to promote AC differentiation in the zebrafish heart.Author SummaryVertebrate hearts are comprised of atrial chambers, which receive blood, and ventricular chambers which expel blood, whose functions need to be coordinated for proper blood circulation. During development, different genetic programs direct the development of these chambers within the vertebrate heart. Members of a family of genes calledNr2fsare conserved regulators of atrial chamber development in vertebrates, with mutations inNr2f2of humans being associated with congenital heart defects affecting the atrium. Here, we examine how the genenr2f1a, which is required for normal atrial chamber development in the model zebrafish, is regulated. Using tools, including transgenic reporter lines and genetic mutants, we identify that factors previously shown to regulate atrial chamber development in mammals have conserved roles regulating a genetic element that promotesnr2f1aexpression within developing atrial cells. Since there is a lack of understanding regarding regulation ofNr2fgenes during vertebrate atrial cell development, our work provides insights into the conservation of genetic networks that promote heart development in vertebrates and if perturbed could underlie congenital heart defects.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3