Calcium-dependent regulation of neuronal excitability is rescued in Fragile X Syndrome by a tat-conjugated N-terminal fragment of FMRP

Author:

Zhan Xiaoqin,Asmara Hadhimulya,Pfaffinger Paul,Turner Ray W.

Abstract

AbstractFragile X Syndrome arises from the loss of Fragile X Messenger Ribonucleoprotein (FMRP) needed for normal neuronal excitability and circuit functions. Recent work revealed that FMRP contributes to mossy fiber LTP by adjusting Kv4 A-type current availability through interactions with a Cav3-Kv4 ion channel complex, yet the mechanism has not yet been defined. In this study using wild-type andFmr1knockout (KO) tsA-201 cells and cerebellar sections fromFmr1KO mice, we show that FMRP associates with all subunits of the Cav3.1-Kv4.3-KChIP3 complex, and is critical to enabling calcium-dependent shifts in Kv4.3 inactivation to modulate A-type current. Specifically, upon depolarization Cav3 calcium influx activates dual specific phosphatase 1/6 (DUSP1/6) to deactivate ERK1/2 (ERK) and lower phosphorylation of Kv4.3, a signalling pathway that does not function inFmr1KO cells. InFmr1KO mouse tissue slices cerebellar granule cells exhibit a hyperexcitable response to membrane depolarizations. Either incubatingFmr1KO cells orin vivoadministration of a tat-conjugated FMRP N-terminus fragment (FMRP-N-tat) rescued Cav3-Kv4 function and granule cell excitability, with a decrease in the level of DUSP6. Together these data reveal a Cav3-activated DUSP signalling pathway critical to the function of a FMRP-Cav3-Kv4 complex that is misregulated inFmr1KO conditions. Moreover, FMRP-N-tat restores function of this complex to rescue calcium-dependent control of neuronal excitability as a potential therapeutic approach to alleviating the symptoms of Fragile X Syndrome.Significance StatementChanges in neuronal excitability and ion channel functions have been a focus in studies of Fragile X Syndrome. Previous work identified ion channels that are regulated by FMRP through either protein translation or direct protein-protein interactions. The current study reveals FMRP as a constitutive member of a Cav3-Kv4 complex that is required for a Cav3-DUSP-ERK signalling pathway to increase A-type current and reduce cerebellar granule cell excitability. InFmr1KO cells, Cav3-Kv4 function and calcium-dependent modulation of A-type current is lost, leading to a hyperexcitable state of cerebellar granule cells. Pretreating with FMRP-N-tat restores all Cav3-Kv4 function and granule cell excitability, providing support for FMRP-tat peptide treatment as a potential therapeutic strategy for Fragile X Syndrome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3