MOTL: enhancing multi-omics matrix factorization with transfer learning

Author:

Hirst DavidORCID,Térézol MorganeORCID,Cantini LauraORCID,Villoutreix PaulORCID,Vignes MatthieuORCID,Baudot AnaïsORCID

Abstract

AbstractJoint matrix factorization is a popular method for extracting lower dimensional representations of multi-omics data. It disentangles underlying mixtures of biological signals, facilitating efficient sample clustering, disease subtyping, or biomarker identification, for instance. However, when a multi-omics dataset is generated from only a limited number of samples, the effectiveness of matrix factorization is reduced. Addressing this limitation, we introduce MOTL (Multi-Omics Transfer Learning), a novel framework for multi-omics matrix factorization with transfer learning based on MOFA (Multi-Omics Factor Analysis). MOTL infers latent factors for a small multi-omics dataset, with respect to those inferred from a large heterogeneous learning dataset. We designed two protocols to evaluate transfer learning approaches, based on simulated and real multi-omics data. Using these protocols, we observed that MOTL improves the factorization of multi-omics datasets, comprised of a limited number of samples, when compared to factorization without transfer learning. We showcase the usefulness of MOTL on a glioblastoma dataset comprised of a small number of samples, revealing an enhanced delineation of cancer status and subtype thanks to transfer learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3