Rat primary cortical cell tri-culture to study effects of amyloid-beta on microglia function

Author:

Kim Hyehyun,Le Bryan,Goshi Noah,Zhu Kan,Grodzki Ana Cristina,Lein Pamela J.,Zhao Min,Seker ErkinORCID

Abstract

AbstractIntroductionThe etiology and progression of sporadic Alzheimer’s Disease (AD) have been studied for decades. One proposed mechanism is that amyloid-beta (Aβ) proteins induce neuroinflammation, synapse loss, and neuronal cell death. Microglia play an especially important role in Aβ clearance, and alterations in microglial function due to aging or disease may result in Aβ accumulation and deleterious effects on neuronal function. However, studying these complex factorsin vivo, where numerous confounding processes exist, is challenging, and until recently,in vitromodels have not allowed sustained culture of microglia, astrocytes and neurons in the same culture. Here, we employ a tri-culture model of rat primary neurons, astrocytes, and microglia and compare it to co-culture (neurons and astrocytes) and mono-culture enriched for microglia to study microglial function (i.e., motility and Aβ clearance) and proteomic response to exogenous Aβ.MethodsWe established cortical co-culture (neurons and astrocytes), tri-culture (neurons, astrocytes, and microglia), and mono-culture (microglia) from perinatal rat pups. On daysin vitro(DIV) 7 – 14, the cultures were exposed to fluorescently-labeled Aβ (FITC-Aβ) particles for varying durations. Images were analyzed to determine the number of FITC-Aβ particles after specific lengths of exposure. A group of cells were stained for βIII-tubulin, GFAP, and Iba1 for morphological analysis via quantitative fluorescence microscopy. Cytokine profiles from conditioned media were obtained. Live-cell imaging with images acquired every 5 minutes for 4 hours was employed to extract microglia motility parameters (e.g., Euclidean distance, migration speed, directionality ratio).Results and discussionFITC-Aβ particles were more effectively cleared in the tri-culture compared to the co-culture. This was attributed to microglia engulfing FITC-Aβ particles, as confirmed via epifluorescence and confocal microscopy. Adding FITC-Aβ significantly increased the size of microglia, but had no significant effect on neuronal surface coverage or astrocyte size. Analysis of the cytokine profile upon FITC-Aβ addition revealed a significant increase in proinflammatory cytokines (TNF-α, IL-1α, IL-1β, IL-6) in tri-culture, but not co-culture. In addition, Aβ addition altered microglia motility marked by swarming-like motion with decreased Euclidean distance yet unaltered speed. These results highlight the importance of cell-cell communication in microglia function (e.g., motility and Aβ clearance) and the utility of the tri-culture model to further investigate microglia dysfunction in AD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3