The cage effect of electron beam irradiation damage in cryo-electron microscopy

Author:

Li YiORCID,Kang Dong-DongORCID,Dai Jia-YuORCID,Wang Lin-WangORCID

Abstract

AbstractElectron beam irradiation can cause damage to biological and organic samples, as determined via transmission electron microscopy (TEM). Cryo-electron microscopy (cryo-EM) significantly reduces such damage by quickly freezing the environmental water around organic molecules. However, there are multiple hypotheses about the mechanism of cryo-protection in cryo-EM. A lower temperature can cause less molecular dissociation in the first stage, or frozen water can have a “cage” effect by preventing the dissociated fragments from flying away. In this work, we used real-time time-dependent density functional theory (rt-TDDFT-MD) molecular dynamic simulations to study the related dynamics. We used our newly developed natural orbital branching (NOB) algorithm to describe the molecular dissociation process after the molecule is ionized. We found that despite the difference in surrounding water molecules at different temperatures, the initial dissociation process is similar. On the other hand, the dissociated fragments will fly away at room temperature, while they will remain in the same cage when frozen water is used. Our results provide direct support for the cage effect mechanism.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3