Abstract
AbstractIndividual vital rates are key determinants of lifetime reproductive success, and variability in these rates shapes population dynamics. Previous studies have found that this vital rate hetero-geneity can influence demographic properties including population growth rates, however, the explicit effects of the amount of variation within and the covariance between vital rates that can also vary throughout the lifespan on population growth remains unknown. Here, we explore the analytical consequences of nongenetic heterogeneity on long-term population growth rates and rates of evolution by modifying traditional age-structured population projection matrices to incorporate variation among individual vital rates. The model allows vital rates to be permanent throughout life (“fixed condition”) or to change over the lifespan (“dynamic condition”). We reduce the complexity associated with adding individual heterogeneity to age-structured models through a novel application of matrix collapsing (“phenotypic collapsing”), showing how to collapse in a manner that preserves the asymptotic and transient dynamics of the original matrix. The main conclusion is that nongenetic individual heterogeneity can strongly impact the longterm growth rate and rates of evolution. The magnitude and sign of this impact depends heavily on how the heterogeneity covaries across the lifespan of an organism. Our results emphasize that nongenetic variation cannot simply be viewed as random noise, but rather that it has consistent, predictable effects on fitness and evolvability.
Publisher
Cold Spring Harbor Laboratory