Abstract
AbstractSingle-cell RNA sequencing (scRNA-seq) has transformed our understanding of cell fate in developmental systems. However, identifying the molecular hallmarks of potency – the capacity of a cell to differentiate into other cell types – has remained challenging. Here, we introduce CytoTRACE 2, an interpretable deep learning framework for characterizing potency and differentiation states on an absolute scale from scRNA-seq data. Across 31 human and mouse scRNA-seq datasets encompassing 28 tissue types, CytoTRACE 2 outperformed existing methods for recovering experimentally determined potency levels and differentiation states covering the entire range of cellular ontogeny. Moreover, it reconstructed the temporal hierarchy of mouse embryogenesis across 62 timepoints; identified pan-tissue expression programs that discriminate major potency levels; and facilitated discovery of cellular phenotypes in cancer linked to survival and immunotherapy resistance. Our results illuminate a fundamental feature of cell biology and provide a broadly applicable platform for delineating single-cell differentiation landscapes in health and disease.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献