Biochemical analysis of the endoribonuclease activity of the human mitochondrial topoisomerase 1

Author:

Bader Cyrielle P. J.,Kasho Erika,Forslund Josefin M. E.,Wessels Malgorzata,Wanrooij Paulina H.

Abstract

AbstractThe incorporation of ribonucleotides (rNMPs) into the nuclear genome leads to severe genomic instability, including strand breaks and short 2-5 bp deletions at repetitive sequences. Curiously, the detrimental effects of rNMPs are not observed for the human mitochondrial genome (mtDNA) that typically contains several rNMPs per molecule. Given that the nuclear genome instability phenotype is dependent on the activity of the nuclear topoisomerase 1 enzyme (hTop1), and mammalian mitochondria contain a distinct topoisomerase 1 paralog (hTop1mt), we hypothesized that the differential effects of rNMPs on the two genomes may reflect differing properties of the two cellular topoisomerase 1 enzymes. Here, we characterized the endoribonuclease activity of hTop1mt and found it to be less efficient than that of its nuclear counterpart, a finding that was partly explained by its substrate binding properties. While hTop1 and yeast Top1 showed higher affinity for an rNMP-containing substrate and were able to cleave at an rNMP located outside of the consensus cleavage site, hTop1mt showed no preference for rNMPs. As a consequence, hTop1mt was inefficient at producing the short rNMP-dependent deletions that are characteristic of Top1-driven genome instability. These findings help explain the tolerance of rNMPs in the mitochondrial genome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3