Machine learning for classifying chronic kidney disease and predicting creatinine levels using at-home measurements

Author:

Metherall BradyORCID,Berryman Anna K.ORCID,Brennan Georgia S.ORCID

Abstract

AbstractBackgroundChronic kidney disease (CKD) is a global health concern with early detection playing a pivotal role in effective management. Machine learning models demonstrate promise in CKD detection, yet the impact on detection and classification using different sets of clinical features remains under-explored.MethodsIn this study, we focus on CKD classification and creatinine prediction using three sets of features; at-home, monitoring, and laboratory. We employ artificial neural networks (ANNs) and random forests (RFs) on a dataset of 400 patients with 25 input features, which we divide into three feature sets. Using 10-fold cross-validation, we calculate metrics such as accuracy, true positive rate (TPR), true negative rate (TNR), and mean squared error.ResultsOur results reveal RF achieves superior accuracy (92.5%) in at-home CKD classification over ANNs (82.9%). ANNs achieve a higher TPR (92.0%) but a lower TNR (67.9%) compared with RFs (90.0% and 95.8%, respectively). For monitoring and laboratory features, both methods achieve accuracies exceeding 98%. The R2 score for creatinine regression is approximately 0.3 higher with laboratory features than at-home features. Feature importance analysis identifies key clinical variables hemoglobin and blood urea, and key comorbidities hypertension and diabetes mellitus, in agreement with previous studies.ConclusionsMachine learning models, particularly RFs, exhibit promise in CKD diagnosis and highlight significant features in CKD detection. Moreover, such models may assist in screening a general population using at-home features—potentially increasing early detection of CKD, thus improving patient care and offering hope for a more effective approach to managing this prevalent health condition.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3