Detecting microbiome species unique or enriched in 20+ cancer types and building cancer microbiome heterogeneity networks

Author:

Ma Zhanshan (Sam),Li Lianwei,Mei Jiandong

Abstract

AbstractIt is postulated that tumor tissue microbiome is one of the enabling characteristics that either promote or suppress cancer cells and tumors to acquire certain hallmarks (functional traits) of cancers, which highlights their critical importance to carcinogenesis, cancer progression and therapy responses. However, characterizing the tumor microbiomes is extremely challenging because of their low biomass and severe difficulties in controlling laboratory-borne contaminants, which is further aggravated by lack of comprehensively effective computational approaches to identify unique or enriched microbial species associated with cancers. Here we take advantages of two recent computational advances, one by Pooreet al(2020,Nature) that computationally generated the microbiome datasets of 33 cancer types [of 10481 patients, including primary tumor (PT), solid normal tissue (NT), and blood samples] from whole-genome and whole-transcriptome data deposited in “The Cancer Genome Atlas” (TCGA), another termed “specificity diversity framework” (SDF) developed recently by Ma (2023). By reanalyzing Poore’s datasets with the SDF framework, further augmented with complex network analysis, we produced the following catalogues of microbial species (archaea, bacteria and viruses) with statistical rigor including unique species (USs) and enriched species (ESs) in PT, NT, or blood tissues. We further reconstructed species specificity network (SSN) and cancer microbiome heterogeneity network (CHN) to identify core/periphery network structures, from which we gain insights on the codependency of microbial species distribution on landscape of cancer types, which seems to suggest that the codependency appears to be universal across all cancer types.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3