Benchmarking organ-specific responses to therapies in tissues differentiated from Cystic Fibrosis patient derived iPSCs

Author:

Daoud Abdelkader,Xia Sunny,Laselva Onofrio,Jiang Janet,Bear Christine E.

Abstract

AbstractCystic Fibrosis (CF) is a life-shortening disease that is caused by mutations in theCFTRgene, a gene that is expressed in multiple organs. There are several primary tissue models of CF disease, including nasal epithelial cultures and rectal organoids, that are effective in reporting the potential efficacy of mutation-targeted therapies called CFTR modulators. However, there is the well-documented variation in tissue dependent, therapeutic response amongst CF patients, even those with the same CF-causing mutation. Hence, there is an interest in developing strategies for benchmarking therapeutic efficacy in different organs relative to isogenic controls. In this study, we evaluated the CFTR chloride channel response to the highly effective CFTR modulator: Trikafta, in CF patient specific, iPSC-derived colonic and airway cultures relative to mutation-corrected (non-CF) tissues from that same individual. We measured pharmacological rescue in both tissues, but interestingly, Trikafta treatment resulted in different levels of functional rescue in the two tissues relative to the relevant isogenic control. This proof-of-concept study lays the groundwork for future comparisons of patient-specific CF therapeutic responses in both pulmonary and extra-pulmonary systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3