Optimizing Design of Genomics Studies for Clonal Evolution Analysis

Author:

Srivatsa ArjunORCID,Schwartz RussellORCID

Abstract

AbstractGenomic biotechnologies have seen rapid development over the past two decades, allowing for both the inference and modification of genetic and epigenetic information at the single cell level. While these tools present enormous potential for basic research, diagnostics, and treatment, they also raise difficult issues of how to design research studies to deploy these tools most effectively. In designing a study at the population or individual level, a researcher might combine several different sequencing modalities and sampling protocols, each with different utility, costs, and other tradeoffs. The central problem this paper attempts to address is then how one might create an optimal study design for a genomic analysis, with particular focus on studies involving somatic variation, typically for applications in cancer genomics. We pose the study design problem as a stochastic constrained nonlinear optimization problem and introduce a simulation-centered optimization procedure that iteratively optimizes the objective function using surrogate modeling combined with pattern and gradient search. Finally, we demonstrate the use of our procedure on diverse test cases to derive resource and study design allocations optimized for various objectives for the study of somatic cell populations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3