Identification of novel and potent inhibitors of SARS-CoV-2 main protease from DNA-encoded chemical libraries

Author:

Akaberi DarioORCID,Pourghasemi Lati Monireh,Krambrich Janina,Berger Julia,Neilsen Grace,Strandback Emilia,Turunen S. Pauliina,Wannberg Johan,Gullberg Hjalmar,Moche Martin,Chinthakindi Praveen Kumar,Nyman Tomas,G. Sarafianos Stefan,Sandström Anja,D. Järhult Josef,Sandberg Kristian,Lundkvist Åke,Verho Oscar,Lennerstrand Johan

Abstract

AbstractIn vitro screening of large compounds libraries with automated high-throughput screening is expensive, time consuming and requires dedicated infrastructures. Conversely, the selection of DNA-encoded chemical libraries (DECL) can be rapidly performed with routine equipment available in most laboratories. In this study we identified novel inhibitors of SARS-CoV-2 main protease (Mpro) through the affinity-based selection of the DELopen library (open access for academics), containing 4.2 billion compounds. The identified inhibitors were peptide-like compounds containing an N-terminal electrophilic group able to form a covalent bond with the nucleophilic Cys145 of Mpro, as confirmed by x-ray crystallography. This DECL selection campaign enabled the discovery of the unoptimized compound SLL11 displaying an IC50of 30 nM, proving that the rapid exploration of large chemical spaces enabled by DECL technology, allows for the direct identification of potent inhibitors avoiding several rounds of iterative medicinal chemistry. Compound MP1, a close analogue of SLL11, showed antiviral activity against SARS-CoV-2 in the low micromolar range when tested in Caco-2 and Calu-3 (EC50= 2.3µM) cell lines. As peptide-like compounds can suffer from low cell permeability and metabolic stability, the cyclization of the compounds as well as the substitution of selected residues with D-enantiomers will be explored in the future to improve the antiviral activity of these novel compounds.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3