Physical forces driveC. elegansembryonic deformation

Author:

Wang Ting,Ben Amar Martine

Abstract

AbstractThe abnormal development of embryos is closely linked to abnormal cell division and elongation, but the underlying mechanism remains to be elucidated. The embryonic development ofC elegansembryo is different because it occurs without cell proliferation or cell rearrangement. Here, we focus on a spectacular 4-fold elongation that is achieved approximately 3 hours before the egg shell hatches and results from active filament networks. The body shape is represented by an inhomogeneous cylinder, which allows us to assess the active stresses induced by the actomyosin network located in the cortex and the muscles in ventral position near the epidermis. By considering the specific embryo configuration, we can quantitatively obtain the contractile forces induced by actomyosin filaments and muscles for a bending torsion event with defined curvature. We find that the active stress induced by actomyosin molecular motors or muscles increases with elongation and bending curvature, while also varying with radius. Both elongation and torsional deformation contribute to increased moment magnitudes that explain the dynamics of the embryo in the egg. Our results highlight the complex interplay between biomechanical factors in modulating embryonic deformation.

Publisher

Cold Spring Harbor Laboratory

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3