Ectomycorrhizal fungi are influenced by ecoregion boundaries across Europe

Author:

Delhaye GuillaumeORCID,van der Linde SietseORCID,Bauman DavidORCID,Orme C. David L.ORCID,Suz Laura M.ORCID,Bidartondo Martin I.ORCID

Abstract

AbstractAimEcoregions and the distance decay in community similarity are fundamental concepts in biogeography and conservation biology that are well supported across plants and animals, but not fungi. Here we test the relevance of these concepts for ectomycorrhizal (ECM) fungi in temperate and boreal regions.LocationEurope.Time period2008 – 2015.Major taxa studiedEctomycorrhizal fungi.MethodsWe used a large dataset of ∼ 24,000 ectomycorrhizas, assigned to 1,350 operational taxonomic units, collected from 129 forest plots via a standardised protocol. We investigated the relevance of ecoregion delimitations for ECM fungi through complementary methodological approaches based on distance decay models, multivariate analyses, and indicator species analyses. We then evaluated the effects of host tree and climate on the observed biogeographical distributions.ResultsEcoregions predict large-scale ECM fungal biodiversity patterns. This is partly explained by climate differences between ecoregions but independent from host tree distribution. Basidiomycetes in the orders Russulales and Atheliales and producing epigeous fruiting bodies, with potentially short-distance dispersal, show the best agreement with ecoregion boundaries. Host tree distribution and fungal abundance (as opposed to presence/absence only) are important to uncover biogeographical patterns in mycorrhizas.Main conclusionsEcoregions are useful units to investigate eco-evolutionary processes in mycorrhizal fungal communities and for conservation decision-making that includes fungi.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3