Characterizing the temporal dynamics and maturation of resting-state activity: an EEG microstate study in preterm and full-term infants

Author:

Adibpour ParvanehORCID,Nasser Hala,Pedoux Amandine,Devisscher Laurie,Elbaz Nicolas,Ghozland Chloé,Hinnekens Elodie,Neumane Sara,Kabdebon Claire,Lefebvre Aline,Kaminska Anna,Hertz-Pannier Lucie,Heneau Alice,Sibony Olivier,Alison Marianne,Delanoë Catherine,Delorme Richard,Barbu-Roth Marianne,Biran Valérie,Dubois Jessica

Abstract

AbstractBy interfering with the normal sequence of mechanisms serving the brain maturation, premature birth and related stress can alter perinatal experiences, with potential long-term consequences on a child’s neurodevelopment. The early characterization of brain functioning and maturational changes is thus of critical interest in premature infants who are at high risk of atypical outcomes and could benefit from early diagnosis and dedicated interventions. Using high-density electroencephalography (HD-EEG), we recorded resting-state brain activity in extreme and very preterm infants at the equivalent age of pregnancy term (n=43), and longitudinally 2-months later (n=33), compared with full-term born infants (n=14). We characterized the maturation of brain activity by using a dedicated microstate analysis to quantify the spatio-temporal dynamics of the spontaneous transient network activity while controlling for vigilance states. The comparison of premature and full-term infants first showed slower dynamics as well as altered spatio-temporal properties of resting-state activity in preterm infants. Maturation of functional networks between term-equivalent age and 2 months later in preterms was translated by the emergence of richer dynamics, manifested in part by faster temporal activity (shorter duration of microstates) as well as an evolution in the spatial organization of the dominant microstates. The inter-individual differences in the temporal dynamics of brain activity at term-equivalent age were further impacted by gestational age at birth and sex (with slower microstate dynamics in infants with lower birth age and in boys) but not by other considered risk factors. This study highlights the potential of the microstate approach to reveal maturational properties of the emerging resting-state network activity in premature infants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3