Liver regeneration by oval cells employing bistability of stemness-senescence, Hippo signaling, EMT-MET, and polyploidy circuit

Author:

Lazovska MarijaORCID,Salmina Kristine,Pjanova DaceORCID,Gerashchenko Bogdan I.,Erenpreisa Jekaterina

Abstract

AbstractLiver hepatocytes possess remarkable regenerative capabilities, yet severe damage may compromise this process. Liver progenitor (“oval”) cells exhibit the potential to differentiate into both hepatocytes and cholangiocytes, making them promising candidates for cell therapy. However, their mechanisms in liver regeneration are not clear. Here, on rat liver oval stem-like epithelial cells (WB-F344) a wound healing assay was performed. The scratched near-confluent monolayers (70% area removed) underwent the G1-arrest, bi-nucleation at 10-12 hours post-wounding, starting movement of epithelial to mesenchymal transition (EMT) cell portion into the wounded areas. Nanog nuclear upregulation, fragmentation, and transition as granules into cytoplasm and around, along with p16Ink4anuclear intrusion from the cytoplasm, loss of epithelial markers, and YAP1/Hippo activation were seen near the wound edge. The replicative stress and proliferation boost followed, documented at 24 hours. Proliferation concluded at 40-48 hours, accomplished by reconstitution of epithelial tissue, the disappearance of Nanog granulation and p16Ink4areturn to the cytoplasm, releasing excess. This investigation reveals novel regulatory facets in liver regeneration by oval cells. It accentuates the stemness-senescence bistable switch regulated by reciprocal nucleo-cytoplasmic transitions of opposite regulators, coordinated with Hippo-pathway switch, replicative stress, and boost, along with ploidy, EMT-MET and paracrine secretome circuits - enabling successfully resolving the massive injury.Abstract FigureFig 1.Graphical abstract.Bistable nuclear-cytoplasmic switch between stemness and senescence regulators in the wound healing process by oval liver cells: (1-2) Priming phase: (1) at the wound edge, (2) in the wound; (3) Proliferative phase, wound closure. Nanog – green; p16INK4A – red, EMT cell - with blue nucleus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3