Distinct Motor Map Characteristics for Biceps and Triceps Muscles in Persons with Chronic Tetraplegia: Implications for Arm Function

Author:

Liu JiaORCID,O’laughlin Kyle,Forrest Gail F.,Arora Tarun,Nemunaitis Gregory,Cunningham David,Kirshblum Steven,Pundik Svetlana,Baker Kelsey,Bryden Anne,Kilgore Kevin,Bethoux Francois,Wang Xiaofeng,Henzel M. Kristi,Brihmat Nabila,Bayram Mehmed Bugrahan,Plow Ela B.

Abstract

AbstractFollowing spinal cord injury (SCI), intact neural resources undergo widespread reorganization within the brain. Animal models reveal motor cortical representations devoted to spared muscles above injury expand at the expense of territories occupied by weaker muscles. In this study, we investigated whether motor representations are similarly reorganized between a relatively spared biceps muscle and a weakened triceps muscle in persons with chronic tetraplegia following traumatic cervical SCI in association with upper limb motor function. Twenty-four adults with cervical SCI and 15 able-bodied participants underwent motor mapping using transcranial magnetic stimulation. We determined following map characteristics: area, amplitude (maximal motor evoked potential and volume), and center of gravity. Maximal voluntary contraction (MVC) and motor function (Capabilities of the Upper Extremity Test or CUE-T) were also assessed. Findings reveal that participants with SCI had hyper-excitable biceps maps than triceps, and hyper-excitable biceps maps also compared to biceps maps in able-bodied participants. Higher amplitude of biceps and triceps maps was associated with better motor function (higher CUE-T) and more distal injury (i.e., more spared segments) in persons with SCI. Amplitudes of biceps but not the triceps maps were associated with higher muscle MVCs. In conclusion, over-excitable biceps than triceps map in SCI may represent deafferentation plasticity. For the first time, we demonstrate how map reorganization of spared and weaker muscles in persons with chronic cervical SCI is associated with upper limb motor status. Use-dependent mechanisms may shift neural balance in favor of spared muscles, supporting potential use as response biomarkers in rehabilitation studies.New & NoteworthyOur study reports evidence in humans with cervical SCI that motor representation for the relatively spared muscle becomes hyper-excitable compared to that for the weaker muscle to the extent that hyper-excitability is even higher compared to biceps maps in uninjured individuals. Use-dependent mechanisms likely favor such heightened excitability of spared maps. For the first time, we demonstrate clinical relevance of map excitability in humans with SCI, supporting potential use as a biomarker of recovery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3