A Synergistic Desmin-SPARC Axis Influences Cardiac Stem Cell Differentiation and Promotes Cardiomyogenesis through Autocrine Regulation

Author:

Leitner Lucia,Schultheis Martina,Hofstetter Franziska,Rudolf Claudia,Kizner Valeria,Fiedler Kerstin,Konrad Marie-Therese,Höbaus Julia,Genini Marco,Kober Julia,Ableitner Elisabeth,Gmaschitz Teresa,Walder Diana,Weitzer GeorgORCID

Abstract

AbstractBACKGROUNDThe mammalian heart contains cardiac stem cells throughout life, but it has not been possible to harness or stimulate these cells to repair damaged myocardium in vivo. Assuming physiological relevance of these cells, which have evolved and have been maintained throughout evolution, we are investigating their function using mouse cardiac stem cell lines as an in vitro model system.METHODSHere we use genetically modified embryonic stem cells and cardiac stem cells from the mouse as model systems to study the influence of desmin and Secreted Protein Acidic and Rich in Cysteine (SPARC) on cardiomyogenesis in embryoid bodies and cardiac bodies. We analyze their expression in self-renewing and differentiating stem cells by fluorescence microscopy, RT-qPCR, quantitative Western blotting and fluorescence activated cell sorting, and assess their influence on the expression of myocardial transcription factors.RESULTSIn embryoid bodies, desmin induces expression and secretion of SPARC, which promotes cardiomyogenesis. Cardiac stem cells secrete substantial amounts of SPARC, which also promotes cardiomyogenesis in a concentration-dependent, autocrine manner and promotes expression of myocardial transcription factors anddesmin. Desmin and SPARC interact genetically and form a positive feedback loop and secreted SPARC negatively influences sparc mRNA expression. Finally, SPARC rescues cardiomyogenic desmin-haploinsufficiency in cardiac stem cells in a glycosylation-dependent manner, increases the phosphorylation of Smad2 and induces the expression ofgata4, nkx2.5andmef2C.CONCLUSIONSDemonstration that desmin-induced autocrine secretion of SPARC in cardiac stem cells promotes cardiomyogenesis raises the possibility that a physiological function of cardiac stem cells in the adult and aging heart may be the gland-like secretion of factors such as SPARC that modulate age-related and adverse environmental influences and thereby contribute to cardiac homeostasis throughout life.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3