Mutability and hypermutation antagonize immunoglobulin codon optimality

Author:

McGrath Joshua J.C.ORCID,Park Juyeon,Troxell Chloe A.,Chervin Jordan C.,Li Lei,Kent Johnathan R.,Changrob SirirukORCID,Fu Yanbin,Huang Min,Zheng Nai-Ying,Wilbanks G. Dewey,Nelson Sean A.,Sun Jiayi,Inghirami Giorgio,Madariaga Maria Lucia L.,Georgiou George,Wilson Patrick C.ORCID

Abstract

AbstractThe efficacy of polyclonal antibody responses is inherently linked to paratope diversity, as generated through V(D)J recombination and somatic hypermutation (SHM). These processes arose in early jawed vertebrates; however, little is known about how immunoglobulin diversity, mutability, and hypermutation have evolved in tandem with another more ubiquitous feature of protein-coding DNA – codon optimality. Here, we explore these relationships through analysis of germlineIGgenes, natural V(D)J repertoires, serum VH usage, and monoclonal antibody (mAb) expression, each through the lens of multiple optimality metrics. Strikingly, proteomic serum IgG sequencing showed that germlineIGHVcodon optimality positively correlated with VH representation after influenza vaccination, andin vitro, codon deoptimization of mAbs with synonymous amino acid sequences caused consistent expression loss. Germline V genes exhibit a range of codon optimality that is maintained by functionality, and inversely related to mutability. SHM caused a load-dependent deoptimization ofIGHVDJ repertoires within human tonsils, bone marrow, and lymph nodes (including SARS-CoV-2-specific clones from mRNA vaccinees), influenza-infected mice, and zebrafish. Comparison of natural mutation profiles to true random suggests the presence of selective pressures that constrain deoptimization. These findings shed light on immunoglobulin evolution, providing unanticipated insights into the antagonistic relationship between variable region diversification, codon optimality, and antibody secretion; ultimately, the need for diversity takes precedence over that for the most efficient expression of the antibody repertoire.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3