Abstract
AbstractAdenosine-to-Inosine (A-to-I) editing is one of the most widespread post-transcriptional RNA modifications and is catalyzed by adenosine deaminases acting on RNA (ADARs). Varying across tissue types, A-to-I editing is essential for numerous biological functions and dysregulation leads to autoimmune and neurological disorders, as well as cancer. Recent evidence has also revealed a link between RNA localization and A-to-I editing, yet understanding of the mechanisms underlying this relationship and its biological impact remains limited. Current methods rely primarily onin vitrocharacterization of extracted RNA that ultimately erases subcellular localization and cell-to-cell heterogeneity. To address these challenges, we have repurposed Endonuclease V (EndoV), a magnesium dependent ribonuclease that cleaves inosine bases in edited RNA, to selectively bind and detect A-to-I edited RNA in cells. The work herein introduces Endonuclease V Immunostaining Assay (EndoVIA), a workflow that provides spatial visualization of edited transcripts, enables rapid quantification of overall inosine abundance, and maps the landscape of A-to-I editing within the transcriptome at the nanoscopic level.
Publisher
Cold Spring Harbor Laboratory