Mu Suppression During Action Observation Only in the Lower, not in the Higher, Frequency Subband

Author:

Badakul Ayşe Nur,Soyman EfeORCID

Abstract

AbstractMu suppression – desynchronization of neural oscillations in central EEG electrodes during action execution and observation – has been widely accepted as a marker for neural mirroring. It has been conventionally and predominantly quantified in the 8-13 Hz range, corresponding to the alpha frequency band, although few studies reported differences in lower and higher subbands that together constitute the mu frequency band. In the present study, we adopted a data-driven approach to examine the spectral and temporal dynamics of mu suppression when participants watched videos depicting hand and face actions and artificial pattern movements. Our analyses in central EEG electrodes revealed that neural oscillations were significantly suppressed during action observation only in the lower (8-10.5 Hz), not in the higher (10.5-13 Hz), subband. No such subband differentiation was observed for the alpha oscillations in the occipital electrodes. In addition, in the lower subband, significantly stronger suppressions were selective for hand actions in the central EEG electrodes placed over the hand region of the sensorimotor cortices and for facial actions in the frontotemporal electrodes placed over the face region of the sensorimotor cortices. In the higher subband, such stimulus selectivity was only observed for facial actions in the frontotemporal electrodes. Furthermore, the neural oscillations in the lower, but not the higher, subband followed the precise temporal patterning of biological motion in the videos. These results indicate that neural oscillations in the lower subband show the characteristics of neural mirroring processes, whereas those in the higher subband might reflect other mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3