A Statistical Model of Cell Wall Dynamics during Expansive Growth

Author:

Sridhar S. LalithaORCID,Ortega J.K.E.,Vernerey F.J.

Abstract

ABSTRACTExpansive growth is a process by which walled cells found in plants, algae and fungi, use turgor pressure to mediate irreversible wall deformation and regulate their shape and volume. The molecular structure of the primary cell wall must therefore be able to perform multiple function simultaneously such as providing structural support by a combining elastic and irreversible deformation and facilitate the deposition of new material during growth. This is accomplished by a network of microfibrils and tethers composed of complex polysaccharides and proteins that are able to dynamically mediate the network topology via constant detachment and reattachment events. Global biophysical models such as those of Lockhart and Ortega have provided crucial macroscopic understanding of the expansive growth process, but they lack the connection to molecular processes that trigger network rearrangements in the wall. In this context, we propose a statistical approach that describes the population behavior of tethers that have elastic properties and the ability to break and re-form in time. Tether properties such as bond lifetimes and stiffness, are then shown to govern global cell wall mechanics such as creep and stress relaxation. The model predictions are compared with experiments of stress relaxation and turgor pressure step-up from existing literature, for the growing cells of incised pea (Pisum sativus L.), algaeChara corallinaand the sporangiophores of the fungus,Phycomyces blakesleeanus. The molecular parameters are estimated from fits to experimental measurements combined with the information on the dimensionless number Πpethat is unique to each species. To our knowledge, this research is the first attempt to use a statistical approach to model the cell wall during expansive growth and we believe it will provide a better understanding of the cell wall dynamics at a molecular level.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3