AluInsertion Polymorphisms and Human Evolution: Evidence for a Larger Population Size in Africa

Author:

Stoneking Mark,Fontius Jennifer J.,Clifford Stephanie L.,Soodyall Himla,Arcot Santosh S.,Saha Nilmani,Jenkins Trefor,Tahir Mohammad A.,Deininger Prescott L.,Batzer Mark A.

Abstract

Alu insertion polymorphisms (polymorphisms consisting of the presence/absence of an Alu element at a particular chromosomal location) offer several advantages over other nuclear DNA polymorphisms for human evolution studies. First, they are typed by rapid, simple, PCR-based assays; second, they are stable polymorphisms—newly inserted Alu elements rarely undergo deletion; third, the presence of an Alu element represents identity by descent—the probability that different Aluelements would independently insert into the exact same chromosomal location is negligible; and fourth, the ancestral state is known with certainty to be the absence of an Alu element. We report here a study of 8 loci in 1500 individuals from 34 worldwide populations. African populations exhibit the most between-population differentiation, and the population tree is rooted in Africa; moreover, the estimated effective time of separation of African versus non-African populations is 137,000 ± 15,000 years ago, in accordance with other genetic data. However, a principal coordinates analysis indicates that populations from Sahul (Australia and New Guinea) are nearly as close to the hypothetical ancestor as are African populations, suggesting that there was an early expansion of tropical populations of our species. An analysis of heterozygosity versus genetic distance suggests that African populations have had a larger effective population size than non-African populations. Overall, these results support the African origin of modern humans in that an earlier expansion of the ancestors of African populations is indicated.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 284 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3