The molecular basis for Pompe disease revealed by the structure of human acid α-glucosidase

Author:

Deming Derrick,Lee Karen,McSherry Tracey,Wei Ronnie R.,Edmunds Tim,Garman Scott C.

Abstract

AbstractPompe disease results from a defect in human acid α-glucosidase (GAA), a lysosomal enzyme that cleaves terminal α1-4 and α1-6 glucose from glycogen. In Pompe disease (also known as Glycogen Storage Disorder type II), the accumulation of undegraded glycogen in lysosomes leads to cellular dysfunction, primarily in muscle and heart tissues. Pompe disease is an active candidate of clinical research, with pharmacological chaperone therapy tested and enzyme replacement therapy approved. Despite production of large amounts of recombinant GAA annually, the structure of GAA has not been reported until now. Here, we describe the first structure of GAA, at 1.7Å resolution. Three structures of GAA complexes reveal the molecular basis for the hundreds of mutations that lead to Pompe disease and for pharmacological chaperoning in the protein. The GAA structure reveals a surprising second sugar-binding site 34Å from the active site, suggesting a possible mechanism for processing of large glycogen substrates. Overall, the structure will assist in the design of next-generation treatments for Pompe disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3