Author:
Ventura Mario,Catacchio Claudia R.,Alkan Can,Marques-Bonet Tomas,Sajjadian Saba,Graves Tina A.,Hormozdiari Fereydoun,Navarro Arcadi,Malig Maika,Baker Carl,Lee Choli,Turner Emily H.,Chen Lin,Kidd Jeffrey M.,Archidiacono Nicoletta,Shendure Jay,Wilson Richard K.,Eichler Evan E.
Abstract
Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes.
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics (clinical),Genetics
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献